Scientists blow up their lab after creating strongest magnet ever

It's a record magnetic field, but... yeah. That didn't last long.

“With magnetic fields above 1,000 teslas, you open up some interesting possibilities,” lead researcher Takeyama explained. “You can observe the motion of electrons outside the material environments they are normally within. So we can study them in a whole new light and explore new kinds of electronic devices. This research could also be useful to those working on fusion power generation.”

The study, published in Review of Scientific Instruments, was released on September 17.

To achieve the record, the team used a technique known as electromagnetic flux-compression (EMFC). The instrument, which generates a low-strength magnetic field of 3.2 teslas, was attached to a row of capacitors that generate 3.2 megajoules, which is a huge amount of energy.

This compresses the magnetic field into a tiny area extremely quickly. But, as the team predicted, it can’t be compressed for long, eventually creating a shock wave that rips the instrument apart. They expected this to happen after about 700 teslas, as that’s what it was built to withstand. But incredibly, it reached 1,200 before exploding.

This image explains it a bit better, from the IEEE institute. “The University of Tokyo’s 1,200-Tesla magnetic field generator is powered by a bank of capacitors [on left, white] capable of storing 5 megajoules. The capacitors’ energy flows into the primary coil [bottom left, gray] and induces a counteracting current and magnetic field in the liner [orange]. This implodes the liner in 40 microseconds, compressing the magnetic field [bottom right].”

Watch it go boom

This article was reprinted with permission of Big Think, where it was originally published.

Related
Explore JWST’s deepest views ever for yourself
If you want to observe the Universe more deeply than ever before, simply point your high-powered observatory at the same region of sky.
“Iron Man” material made from DNA and glass is 4x stronger than steel
Using only DNA and glass, researchers made a material four times stronger and five times lighter than steel. It was inspired by Iron Man.
From a five-layer graphene sandwich, a rare electronic state emerges
When stacked in layers in a rhombohedral pattern, graphene takes on a rare state that could advance powerful magnetic memory devices.
Ex-NASA engineer Mark Rober created the world’s smallest Nerf gun — from DNA
Mark Rober and Pallav Kosuri created a Nerf gun so tiny they had to build it out of DNA. This DNA “origami” has the potential to revolutionize engineering.
Cleaning up one of the world’s most commonly used substances
C-Crete has created a more sustainable cement binding material that could significantly reduce the industry’s CO2 emissions.
Up Next
Exit mobile version